241 research outputs found

    Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations

    Get PDF
    Deep-learning has proved in recent years to be a powerful tool for image analysis and is now widely used to segment both 2D and 3D medical images. Deep-learning segmentation frameworks rely not only on the choice of network architecture but also on the choice of loss function. When the segmentation process targets rare observations, a severe class imbalance is likely to occur between candidate labels, thus resulting in sub-optimal performance. In order to mitigate this issue, strategies such as the weighted cross-entropy function, the sensitivity function or the Dice loss function, have been proposed. In this work, we investigate the behavior of these loss functions and their sensitivity to learning rate tuning in the presence of different rates of label imbalance across 2D and 3D segmentation tasks. We also propose to use the class re-balancing properties of the Generalized Dice overlap, a known metric for segmentation assessment, as a robust and accurate deep-learning loss function for unbalanced tasks

    Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs

    Full text link
    Segmenting vascular pathologies such as white matter lesions in Brain magnetic resonance images (MRIs) require acquisition of multiple sequences such as T1-weighted (T1-w) --on which lesions appear hypointense-- and fluid attenuated inversion recovery (FLAIR) sequence --where lesions appear hyperintense--. However, most of the existing retrospective datasets do not consist of FLAIR sequences. Existing missing modality imputation methods separate the process of imputation, and the process of segmentation. In this paper, we propose a method to link both modality imputation and segmentation using convolutional neural networks. We show that by jointly optimizing the imputation network and the segmentation network, the method not only produces more realistic synthetic FLAIR images from T1-w images, but also improves the segmentation of WMH from T1-w images only.Comment: Conference on Medical Imaging with Deep Learning MIDL 201

    Retrieval and Registration of Long-Range Overlapping Frames for Scalable Mosaicking of In Vivo Fetoscopy

    Get PDF
    Purpose: The standard clinical treatment of Twin-to-Twin Transfusion Syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired. Methods: To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence of artifacts, among others), we propose the following contributions: (i) robust pairwise registration is achieved by aligning the orientation of the image gradients, and (ii) difficulties regarding long-range consistency (e.g. due to the presence of outliers) is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their respective location in time. Results: In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in comparison to two standard baselines. Conclusion: This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences. Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.Comment: Accepted for publication in International Journal of Computer Assisted Radiology and Surgery (IJCARS

    Computation of the Mid-Sagittal Plane in 3D Medical Images of the Head

    Get PDF
    We present a new symmetry-based method allowing to compute, reorient and recenter the mid-sagittal plane in anatomical and functional 3D images of the brain. In the literature, there are mainly two definitions of this plane: it is either the plane best fitting the inter-hemispheric fissure of the brain, or the plane best superposing the two sides of the head by reflective symmetry. We use this latter definition in our method, which is composed of two steps. At first, the computation of local similarity measures between the two sides of the brain allows to match homologous anatomical structures or functional areas, by way of a block matching procedure. The output is a set of point-to-point correspondences: the centers of homologous blocks. Subsequently, we define the mid-sagittal plane as the one superposing at best the points in one side of the head and their counterparts in the other side by reflective symmetry. The estimatio- n of the parameters characterizing the plane is performed by a least trimmed squares optimization scheme. Then, the estimated plane is aligned with the center of the image lattice. This method is fully automated, objective and reproducible. Our method tackles the main issue posed by the sym­me­try-ba- sed approach, that often relies on global similarity measures (such as the cross-correlation) between the intensities of the two flipped versions of the 3D image. The estimation of the mid-sagittal plane can be severely biased when normal or abnormal asymmetries hide the underlying symmetry of the brain or the skull. The computation of local measures of symmetry and the use of a robust estimation technique allow to discriminate between symmetrical and asymmetrical areas. Then, the mid-sagittal plane is mainly computed from the underlying gross symmetry of the brain, because its estimation is robust with respect to normal or abnormal asymmetries which are treated as outliers. We show on a large database of synthetic images that we can obtain a subvoxel accuracy in a CPU time of about 3 minutes, for strongly tilted heads, noisy and biased images. We present results on isotropic or anisotropic anatomical (MR, CT), and functional (SPECT and PET) images

    Computation of the Mid-Sagittal Plane in 3D Brain Images

    Get PDF
    International audienceWe present a new method to automatically compute, reorient, and recenter the mid-sagittal plane in anatomical and functional three-dimensional (3-D) brain images. This iterative approach is composed of two steps. At first, given an initial guess of the mid-sagittal plane (generally, the central plane of the image grid), the computation of local similarity measures between the two sides of the head allows to identify homologous anatomical structures or functional areas, by way of a block matching procedure. The output is a set of point-to-point correspondences: the centers of homologous blocks. Subsequently, we define the mid-sagittal plane as the one best superposing the points on one side and their counterparts on the other side by reflective symmetry. Practically, the computation of the parameters characterizing the plane is performed by a least trimmed squares estimation. Then, the estimated plane is aligned with the center of the image grid, and the whole process is iterated until convergence. The robust estimation technique we use allows normal or abnormal asymmetrical structures or areas to be treated as outliers, and the plane to be mainly computed from the underlying gross symmetry of the brain. The algorithm is fast and accurate, even for strongly tilted heads, and even in presence of high acquisition noise and bias field, as shown on a large set of synthetic data. The algorithm has also been visually evaluated on a large set of real magnetic resonance (MR) images.We present a few results on isotropic as well as anisotropic anatomical (MR and computed tomography) and functional (single photon emission computed tomography and positron emission tomography) real images, for normal and pathological subjects

    Machine Learning for Alzheimer’s Disease and Related Dementias

    Get PDF
    Dementia denotes the condition that affects people suffering from cognitive and behavioral impairments due to brain damage. Common causes of dementia include Alzheimer’s disease, vascular dementia, or frontotemporal dementia, among others. The onset of these pathologies often occurs at least a decade before any clinical symptoms are perceived. Several biomarkers have been developed to gain a better insight into disease progression, both in the prodromal and the symptomatic phases. Those markers are commonly derived from genetic information, biofluid, medical images, or clinical and cognitive assessments. Information is nowadays also captured using smart devices to further understand how patients are affected. In the last two to three decades, the research community has made a great effort to capture and share for research a large amount of data from many sources. As a result, many approaches using machine learning have been proposed in the scientific literature. Those include dedicated tools for data harmonization, extraction of biomarkers that act as disease progression proxy, classification tools, or creation of focused modeling tools that mimic and help predict disease progression. To date, however, very few methods have been translated to clinical care, and many challenges still need addressing

    Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm.

    Get PDF
    The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping
    • …
    corecore